W3Cschool
恭喜您成為首批注冊用戶
獲得88經(jīng)驗值獎勵
在分布式深度學(xué)習(xí)領(lǐng)域,PyTorch 的 torch.distributed.rpc
包提供了一種靈活且強(qiáng)大的機(jī)制,用于構(gòu)建復(fù)雜的分布式應(yīng)用。通過遠(yuǎn)程過程調(diào)用(RPC)和遠(yuǎn)程引用(RRef),開發(fā)者可以輕松地在不同進(jìn)程中傳遞數(shù)據(jù)和方法調(diào)用,實現(xiàn)高效的分布式訓(xùn)練和推理。本文將通過詳細(xì)的代碼示例和深入的原理講解,幫助您快速掌握 PyTorch 分布式 RPC 框架的核心概念和應(yīng)用方法。
RPC(遠(yuǎn)程過程調(diào)用)允許一個進(jìn)程(客戶端)調(diào)用另一個進(jìn)程(服務(wù)器)中的函數(shù),就像調(diào)用本地函數(shù)一樣。在 PyTorch 的 torch.distributed.rpc
包中,RPC 提供了 rpc_sync
和 rpc_async
兩種調(diào)用方式,分別用于阻塞式和非阻塞式通信。
import torch.distributed.rpc as rpc
## 阻塞式 RPC 調(diào)用
result = rpc.rpc_sync("dest_worker", torch.add, args=(torch.tensor(2), 3))
## 非阻塞式 RPC 調(diào)用
future = rpc.rpc_async("dest_worker", torch.add, args=(torch.tensor(2), 3))
result = future.wait()
RRef(Remote Reference)用于在分布式環(huán)境中引用遠(yuǎn)程對象。它允許開發(fā)者在不同進(jìn)程中共享和操作數(shù)據(jù),而不必?fù)?dān)心對象的物理位置。
from torch.distributed.rpc import RRef
## 創(chuàng)建遠(yuǎn)程對象
rref = rpc.remote("dest_worker", torch.randn, args=(3, 3))
## 獲取遠(yuǎn)程對象的值
value = rref.to_here()
策略網(wǎng)絡(luò)是強(qiáng)化學(xué)習(xí)中的核心組件,用于根據(jù)當(dāng)前狀態(tài)選擇動作。
import torch.nn as nn
import torch.nn.functional as F
class Policy(nn.Module):
def __init__(self):
super(Policy, self).__init__()
self.affine1 = nn.Linear(4, 128)
self.dropout = nn.Dropout(p=0.6)
self.affine2 = nn.Linear(128, 2)
def forward(self, x):
x = self.affine1(x)
x = self.dropout(x)
x = F.relu(x)
action_scores = self.affine2(x)
return F.softmax(action_scores, dim=1)
觀察者負(fù)責(zé)與環(huán)境交互,代理負(fù)責(zé)根據(jù)觀察者收集的數(shù)據(jù)更新策略網(wǎng)絡(luò)。
import gym
import torch.distributed.rpc as rpc
class Observer:
def __init__(self, rank):
self.rank = rank
self.env = gym.make('CartPole-v1')
def run_episode(self, agent_rref, n_steps):
state = self.env.reset()
for _ in range(n_steps):
action = rpc.rpc_sync(agent_rref.owner(), _call_method, args=(Agent.select_action, agent_rref, self.rank, state))
next_state, reward, done, _ = self.env.step(action)
rpc.rpc_sync(agent_rref.owner(), _call_method, args=(Agent.report_reward, agent_rref, self.rank, reward))
state = next_state
if done:
break
class Agent:
def __init__(self, world_size):
self.ob_rrefs = []
self.policy = Policy()
self.optimizer = torch.optim.Adam(self.policy.parameters(), lr=1e-2)
def select_action(self, state):
state = torch.from_numpy(state).float().unsqueeze(0)
probs = self.policy(state)
m = torch.distributions.Categorical(probs)
action = m.sample()
return action.item()
def report_reward(self, reward):
# 保存獎勵用于更新策略
pass
def run_episode(self, n_steps):
# 觸發(fā)觀察者運行情節(jié)
pass
def finish_episode(self):
# 更新策略網(wǎng)絡(luò)
pass
import torch.multiprocessing as mp
def run_worker(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '29500'
if rank == 0:
rpc.init_rpc("agent", rank=rank, world_size=world_size)
agent = Agent(world_size)
for episode in range(100):
agent.run_episode(n_steps=10)
agent.finish_episode()
else:
rpc.init_rpc(f"observer_{rank}", rank=rank, world_size=world_size)
rpc.shutdown()
mp.spawn(run_worker, args=(2,), nprocs=2, join=True)
import torch.nn as nn
class EmbeddingTable(nn.Module):
def __init__(self, ntoken, ninp, dropout):
super(EmbeddingTable, self).__init__()
self.drop = nn.Dropout(dropout)
self.encoder = nn.Embedding(ntoken, ninp).cuda()
def forward(self, input):
return self.drop(self.encoder(input.cuda())).cpu()
class Decoder(nn.Module):
def __init__(self, ntoken, nhid, dropout):
super(Decoder, self).__init__()
self.drop = nn.Dropout(dropout)
self.decoder = nn.Linear(nhid, ntoken)
def forward(self, output):
return self.decoder(self.drop(output))
class RNNModel(nn.Module):
def __init__(self, ps, ntoken, ninp, nhid, nlayers, dropout=0.5):
super(RNNModel, self).__init__()
self.emb_table_rref = rpc.remote(ps, EmbeddingTable, args=(ntoken, ninp, dropout))
self.rnn = nn.LSTM(ninp, nhid, nlayers, dropout=dropout)
self.decoder_rref = rpc.remote(ps, Decoder, args=(ntoken, nhid, dropout))
def forward(self, input, hidden):
emb = _remote_method(EmbeddingTable.forward, self.emb_table_rref, input)
output, hidden = self.rnn(emb, hidden)
decoded = _remote_method(Decoder.forward, self.decoder_rref, output)
return decoded, hidden
from torch.distributed.autograd import context as dist_autograd
from torch.distributed.optim import DistributedOptimizer
def run_trainer():
model = RNNModel('ps', ntoken=10, ninp=2, nhid=3, nlayers=4)
opt = DistributedOptimizer(optim.SGD, model.parameter_rrefs(), lr=0.05)
criterion = torch.nn.CrossEntropyLoss()
def get_next_batch():
for _ in range(5):
data = torch.LongTensor(5, 3) % 10
target = torch.LongTensor(5, 10) % 3
yield data, target
for epoch in range(10):
for data, target in get_next_batch():
with dist_autograd.context() as context_id:
output, hidden = model(data, (torch.randn(4, 3, 3), torch.randn(4, 3, 3)))
loss = criterion(output, target)
dist_autograd.backward(context_id, [loss])
opt.step(context_id)
def run_worker(rank, world_size):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '29500'
if rank == 1:
rpc.init_rpc("trainer", rank=rank, world_size=world_size)
run_trainer()
else:
rpc.init_rpc("ps", rank=rank, world_size=world_size)
rpc.shutdown()
if __name__ == "__main__":
mp.spawn(run_worker, args=(2,), nprocs=2, join=True)
通過本文的詳細(xì)講解,您已經(jīng)掌握了 PyTorch 分布式 RPC 框架的核心概念和應(yīng)用方法。RPC 和 RRef 提供了強(qiáng)大的工具,用于在分布式環(huán)境中構(gòu)建復(fù)雜的模型和訓(xùn)練流程。未來,您可以進(jìn)一步探索如何在實際項目中應(yīng)用這些技術(shù),以解決更大規(guī)模的模型訓(xùn)練和推理任務(wù)。編程獅將持續(xù)為您提供更多深度學(xué)習(xí)分布式計算的優(yōu)質(zhì)教程,助力您的技術(shù)成長。
Copyright©2021 w3cschool編程獅|閩ICP備15016281號-3|閩公網(wǎng)安備35020302033924號
違法和不良信息舉報電話:173-0602-2364|舉報郵箱:jubao@eeedong.com
掃描二維碼
下載編程獅App
編程獅公眾號
聯(lián)系方式:
更多建議: