原文: https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
作者: Nathan Inkawhich
本教程將通過(guò)一個(gè)示例對(duì) DCGAN 進(jìn)行介紹。 在向其展示許多真實(shí)名人的照片后,我們將訓(xùn)練一個(gè)生成對(duì)抗網(wǎng)絡(luò)(GAN)以產(chǎn)生新名人。 此處的大部分代碼來(lái)自 pytorch / examples 中的 dcgan 實(shí)現(xiàn),并且本文檔將對(duì)該實(shí)現(xiàn)進(jìn)行詳盡的解釋?zhuān)㈥U明此模型的工作方式和原因。 但是請(qǐng)放心,不需要 GAN 的先驗(yàn)知識(shí),但這可能需要新手花一些時(shí)間來(lái)推理幕后實(shí)際發(fā)生的事情。 另外,為了節(jié)省時(shí)間,安裝一兩個(gè) GPU 也將有所幫助。 讓我們從頭開(kāi)始。
GAN 是用于教授 DL 模型以捕獲訓(xùn)練數(shù)據(jù)分布的框架,因此我們可以從同一分布中生成新數(shù)據(jù)。 GAN 由 Ian Goodfellow 于 2014 年發(fā)明,并首先在論文生成對(duì)抗網(wǎng)絡(luò)中進(jìn)行了描述。 它們由兩個(gè)不同的模型組成:生成器和鑒別器。 生成器的工作是生成看起來(lái)像訓(xùn)練圖像的“假”圖像。 鑒別器的工作是查看圖像并從生成器輸出它是真實(shí)的訓(xùn)練圖像還是偽圖像。 在訓(xùn)練過(guò)程中,生成器不斷嘗試通過(guò)生成越來(lái)越好的偽造品而使鑒別器的性能超過(guò)智者,而鑒別器正在努力成為更好的偵探并正確地對(duì)真實(shí)和偽造圖像進(jìn)行分類(lèi)。 博弈的平衡點(diǎn)是當(dāng)生成器生成的偽造品看起來(lái)像直接來(lái)自訓(xùn)練數(shù)據(jù)時(shí),而鑒別器則總是猜測(cè)生成器輸出是真品還是偽造品的 50%置信度。
現(xiàn)在,讓我們從判別器開(kāi)始定義一些在整個(gè)教程中使用的符號(hào)。 令
是表示圖像的數(shù)據(jù)。
是鑒別器網(wǎng)絡(luò),其輸出
來(lái)自訓(xùn)練數(shù)據(jù)而非生成器的(標(biāo)量)概率。 在這里,由于我們要處理圖像,因此
的輸入是 CHW 大小為 3x64x64 的圖像。 直觀地講,當(dāng)
來(lái)自訓(xùn)練數(shù)據(jù)時(shí),
應(yīng)該為高,而當(dāng)
來(lái)自發(fā)生器時(shí),則應(yīng)為低。
也可以被視為傳統(tǒng)的二進(jìn)制分類(lèi)器。
對(duì)于發(fā)生器的表示法,將
設(shè)為從標(biāo)準(zhǔn)正態(tài)分布中采樣的潛在空間矢量。
表示將潛在矢量
映射到數(shù)據(jù)空間的生成器函數(shù)。
的目標(biāo)是估計(jì)訓(xùn)練數(shù)據(jù)來(lái)自的分布(
),以便它可以從該估計(jì)的分布(
)中生成假樣本。
因此,
是發(fā)生器
的輸出是真實(shí)圖像的概率(標(biāo)量)。 如所述,Goodfellow 的論文,
和
玩一個(gè) minimax 游戲,其中
試圖最大化其正確分類(lèi)實(shí)物和假貨(
)的概率,而
嘗試 以最大程度地降低
預(yù)測(cè)其輸出為假的可能性(
)。 從本文來(lái)看,GAN 損失函數(shù)為
從理論上講,此 minimax 游戲的解決方案是
,判別器會(huì)隨機(jī)猜測(cè)輸入是真實(shí)的還是假的。 但是,GAN 的收斂理論仍在積極研究中,實(shí)際上,模型并不總是能達(dá)到這一目的。
DCGAN 是上述 GAN 的直接擴(kuò)展,不同之處在于 DCGAN 分別在鑒別器和生成器中分別使用卷積和卷積轉(zhuǎn)置層。 它最初是由 Radford 等人描述的。 等 深度卷積生成對(duì)抗網(wǎng)絡(luò)中的無(wú)監(jiān)督表示學(xué)習(xí)。 鑒別器由分層的卷積層,
批處理規(guī)范層和 LeakyReLU 激活組成。 輸入是 3x64x64 的輸入圖像,輸出是輸入來(lái)自真實(shí)數(shù)據(jù)分布的標(biāo)量概率。 生成器由卷積轉(zhuǎn)置層,批處理規(guī)范層和
ReLU 激活組成。 輸入是從標(biāo)準(zhǔn)正態(tài)分布中提取的潛矢量
,輸出是 3x64x64 RGB 圖像。 跨步的轉(zhuǎn)置圖層使?jié)撌噶靠梢赞D(zhuǎn)換為與圖像具有相同形狀的體積。 在本文中,作者還提供了有關(guān)如何設(shè)置優(yōu)化器,如何計(jì)算損失函數(shù)以及如何初始化模型權(quán)重的一些技巧,所有這些將在接下來(lái)的部分中進(jìn)行解釋。
from __future__ import print_function
#%matplotlib inline
import argparse
import os
import random
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML
## Set random seed for reproducibility
manualSeed = 999
#manualSeed = random.randint(1, 10000) # use if you want new results
print("Random Seed: ", manualSeed)
random.seed(manualSeed)
torch.manual_seed(manualSeed)
得出:
Random Seed: 999
讓我們?yōu)榕懿蕉x一些輸入:
# Root directory for dataset
dataroot = "data/celeba"
## Number of workers for dataloader
workers = 2
## Batch size during training
batch_size = 128
## Spatial size of training images. All images will be resized to this
## size using a transformer.
image_size = 64
## Number of channels in the training images. For color images this is 3
nc = 3
## Size of z latent vector (i.e. size of generator input)
nz = 100
## Size of feature maps in generator
ngf = 64
## Size of feature maps in discriminator
ndf = 64
## Number of training epochs
num_epochs = 5
## Learning rate for optimizers
lr = 0.0002
## Beta1 hyperparam for Adam optimizers
beta1 = 0.5
## Number of GPUs available. Use 0 for CPU mode.
ngpu = 1
在本教程中,我們將使用 Celeb-A Faces 數(shù)據(jù)集,該數(shù)據(jù)集可在鏈接的站點(diǎn)或 Google 云端硬盤(pán)中下載。 數(shù)據(jù)集將下載為名為 img_align_celeba.zip 的文件。 下載完成后,創(chuàng)建一個(gè)名為 celeba 的目錄,并將 zip 文件解壓縮到該目錄中。 然后,將此筆記本的數(shù)據(jù)根輸入設(shè)置為剛創(chuàng)建的 celeba 目錄。 結(jié)果目錄結(jié)構(gòu)應(yīng)為:
/path/to/celeba
-> img_align_celeba
-> 188242.jpg
-> 173822.jpg
-> 284702.jpg
-> 537394.jpg
...
這是重要的一步,因?yàn)槲覀儗⑹褂?ImageFolder 數(shù)據(jù)集類(lèi),該類(lèi)要求數(shù)據(jù)集的根文件夾中有子目錄。 現(xiàn)在,我們可以創(chuàng)建數(shù)據(jù)集,創(chuàng)建數(shù)據(jù)加載器,將設(shè)備設(shè)置為可以運(yùn)行,最后可視化一些訓(xùn)練數(shù)據(jù)。
# We can use an image folder dataset the way we have it setup.
## Create the dataset
dataset = dset.ImageFolder(root=dataroot,
transform=transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]))
## Create the dataloader
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
shuffle=True, num_workers=workers)
## Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
## Plot some training images
real_batch = next(iter(dataloader))
plt.figure(figsize=(8,8))
plt.axis("off")
plt.title("Training Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=2, normalize=True).cpu(),(1,2,0)))
設(shè)置好輸入?yún)?shù)并準(zhǔn)備好數(shù)據(jù)集后,我們現(xiàn)在可以進(jìn)入實(shí)現(xiàn)了。 我們將從 Weigth 初始化策略開(kāi)始,然后詳細(xì)討論生成器,鑒別器,損失函數(shù)和訓(xùn)練循環(huán)。
從 DCGAN 論文中,作者指定所有模型權(quán)重均應(yīng)從均值= 0,stdev = 0.02 的正態(tài)分布中隨機(jī)初始化。 weights_init
函數(shù)采用已初始化的模型作為輸入,并重新初始化所有卷積,卷積轉(zhuǎn)置和批處理歸一化層,以滿(mǎn)足該標(biāo)準(zhǔn)。 初始化后立即將此功能應(yīng)用于模型。
# custom weights initialization called on netG and netD
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
生成器
旨在將潛在空間矢量(
)映射到數(shù)據(jù)空間。 由于我們的數(shù)據(jù)是圖像,因此將
轉(zhuǎn)換為數(shù)據(jù)空間意味著最終創(chuàng)建與訓(xùn)練圖像大小相同的 RGB 圖像(即 3x64x64)。 在實(shí)踐中,這是通過(guò)一系列跨步的二維卷積轉(zhuǎn)置層來(lái)完成的,每個(gè)層都與 2d 批處理規(guī)范層和 relu 激活配對(duì)。 生成器的輸出通過(guò) tanh 函數(shù)進(jìn)行饋送,以使其返回到
的輸入數(shù)據(jù)范圍。 值得注意的是,在卷積轉(zhuǎn)置層之后存在批處理規(guī)范函數(shù),因?yàn)檫@是 DCGAN 論文的關(guān)鍵貢獻(xiàn)。 這些層有助于訓(xùn)練過(guò)程中的梯度流動(dòng)。 DCGAN 紙生成的圖像如下所示。
注意,我們?cè)谳斎氩糠种性O(shè)置的輸入 (nz , ngf 和 nc )如何影響代碼中的生成器體系結(jié)構(gòu)。 nz 是 z 輸入向量的長(zhǎng)度, ngf 與通過(guò)生成器傳播的特征圖的大小有關(guān), nc 是 輸出圖像中的通道(對(duì)于 RGB 圖像設(shè)置為 3)。 下面是生成器的代碼。
# Generator Code
class Generator(nn.Module):
def __init__(self, ngpu):
super(Generator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
# input is Z, going into a convolution
nn.ConvTranspose2d( nz, ngf * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(ngf * 8),
nn.ReLU(True),
# state size. (ngf*8) x 4 x 4
nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 4),
nn.ReLU(True),
# state size. (ngf*4) x 8 x 8
nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf * 2),
nn.ReLU(True),
# state size. (ngf*2) x 16 x 16
nn.ConvTranspose2d( ngf * 2, ngf, 4, 2, 1, bias=False),
nn.BatchNorm2d(ngf),
nn.ReLU(True),
# state size. (ngf) x 32 x 32
nn.ConvTranspose2d( ngf, nc, 4, 2, 1, bias=False),
nn.Tanh()
# state size. (nc) x 64 x 64
)
def forward(self, input):
return self.main(input)
現(xiàn)在,我們可以實(shí)例化生成器并應(yīng)用weights_init
函數(shù)。 簽出打印的模型以查看生成器對(duì)象的結(jié)構(gòu)。
# Create the generator
netG = Generator(ngpu).to(device)
## Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):
netG = nn.DataParallel(netG, list(range(ngpu)))
## Apply the weights_init function to randomly initialize all weights
## to mean=0, stdev=0.2.
netG.apply(weights_init)
## Print the model
print(netG)
得出:
Generator(
(main): Sequential(
(0): ConvTranspose2d(100, 512, kernel_size=(4, 4), stride=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace=True)
(3): ConvTranspose2d(512, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(4): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(5): ReLU(inplace=True)
(6): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(7): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(8): ReLU(inplace=True)
(9): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(10): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(11): ReLU(inplace=True)
(12): ConvTranspose2d(64, 3, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(13): Tanh()
)
)
如前所述,鑒別符
是一個(gè)二進(jìn)制分類(lèi)網(wǎng)絡(luò),該二進(jìn)制分類(lèi)網(wǎng)絡(luò)將圖像作為輸入并輸出輸入圖像是真實(shí)的(與假的相對(duì))的標(biāo)量概率。 在這里,
拍攝 3x64x64 的輸入圖像,通過(guò)一系列的 Conv2d,BatchNorm2d 和 LeakyReLU 層對(duì)其進(jìn)行處理,然后通過(guò) Sigmoid 激活函數(shù)輸出最終概率。 如果需要解決此問(wèn)題,可以用更多層擴(kuò)展此體系結(jié)構(gòu),但是使用跨步卷積,BatchNorm 和 LeakyReLUs 具有重要意義。 DCGAN 論文提到,使用跨步卷積而不是合并以進(jìn)行下采樣是一個(gè)好習(xí)慣,因?yàn)樗梢宰尵W(wǎng)絡(luò)學(xué)習(xí)自己的合并功能。 批處理規(guī)范和泄漏的 relu 函數(shù)還可以促進(jìn)健康的梯度流,這對(duì)于
和
的學(xué)習(xí)過(guò)程都是至關(guān)重要的。
鑒別碼
class Discriminator(nn.Module):
def __init__(self, ngpu):
super(Discriminator, self).__init__()
self.ngpu = ngpu
self.main = nn.Sequential(
# input is (nc) x 64 x 64
nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf) x 32 x 32
nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 2),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*2) x 16 x 16
nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 4),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*4) x 8 x 8
nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(ndf * 8),
nn.LeakyReLU(0.2, inplace=True),
# state size. (ndf*8) x 4 x 4
nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, input):
return self.main(input)
現(xiàn)在,與生成器一樣,我們可以創(chuàng)建鑒別器,應(yīng)用weights_init
函數(shù),并打印模型的結(jié)構(gòu)。
# Create the Discriminator
netD = Discriminator(ngpu).to(device)
## Handle multi-gpu if desired
if (device.type == 'cuda') and (ngpu > 1):
netD = nn.DataParallel(netD, list(range(ngpu)))
## Apply the weights_init function to randomly initialize all weights
## to mean=0, stdev=0.2.
netD.apply(weights_init)
## Print the model
print(netD)
得出:
Discriminator(
(main): Sequential(
(0): Conv2d(3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(1): LeakyReLU(negative_slope=0.2, inplace=True)
(2): Conv2d(64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(3): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(4): LeakyReLU(negative_slope=0.2, inplace=True)
(5): Conv2d(128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(6): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(7): LeakyReLU(negative_slope=0.2, inplace=True)
(8): Conv2d(256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1), bias=False)
(9): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(10): LeakyReLU(negative_slope=0.2, inplace=True)
(11): Conv2d(512, 1, kernel_size=(4, 4), stride=(1, 1), bias=False)
(12): Sigmoid()
)
)
通過(guò)
和
設(shè)置,我們可以指定它們?nèi)绾瓮ㄟ^(guò)損失函數(shù)和優(yōu)化器學(xué)習(xí)。 我們將使用在 PyTorch 中定義的二進(jìn)制交叉熵?fù)p失 (BCELoss)函數(shù):
請(qǐng)注意,此函數(shù)如何提供目標(biāo)函數(shù)(即
和
)中兩個(gè)日志分量的計(jì)算。 我們可以指定[CEG2]輸入要使用 BCE 公式的哪一部分。 這是在即將到來(lái)的訓(xùn)練循環(huán)中完成的,但重要的是要了解我們?nèi)绾蝺H通過(guò)更改
(即 GT 標(biāo)簽)就可以選擇想要計(jì)算的組件。
接下來(lái),我們將實(shí)際標(biāo)簽定義為 1,將假標(biāo)簽定義為 0。這些標(biāo)簽將在計(jì)算
和
的損耗時(shí)使用,這也是 GAN 原始文件中使用的慣例。 最后,我們?cè)O(shè)置了兩個(gè)單獨(dú)的優(yōu)化器,一個(gè)用于
,一個(gè)用于
。 如 DCGAN 論文中所述,這兩個(gè)都是 Adam 優(yōu)化器,學(xué)習(xí)率均為 0.0002,Beta1 = 0.5。 為了跟蹤生成器的學(xué)習(xí)進(jìn)度,我們將生成一批固定的潛在矢量,這些矢量是從高斯分布(即 fixed_noise)中提取的。 在訓(xùn)練循環(huán)中,我們將定期將此 fixed_noise 輸入到
中,并且在迭代過(guò)程中,我們將看到圖像形成于噪聲之外。
# Initialize BCELoss function
criterion = nn.BCELoss()
## Create batch of latent vectors that we will use to visualize
## the progression of the generator
fixed_noise = torch.randn(64, nz, 1, 1, device=device)
## Establish convention for real and fake labels during training
real_label = 1
fake_label = 0
## Setup Adam optimizers for both G and D
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
最后,既然我們已經(jīng)定義了 GAN 框架的所有部分,我們就可以對(duì)其進(jìn)行訓(xùn)練。 請(qǐng)注意,訓(xùn)練 GAN 某種程度上是一種藝術(shù)形式,因?yàn)椴徽_的超參數(shù)設(shè)置會(huì)導(dǎo)致模式崩潰,而對(duì)失敗的原因幾乎沒(méi)有解釋。 在這里,我們將嚴(yán)格遵循 Goodfellow 論文中的算法 1,同時(shí)遵守 ganhacks 中顯示的一些最佳做法。 即,我們將“為真實(shí)和偽造構(gòu)建不同的小批量”圖像,并調(diào)整
G 的目標(biāo)函數(shù)以最大化
。 訓(xùn)練分為兩個(gè)主要部分。 第 1 部分更新了鑒別器,第 2 部分更新了生成器。
第 1 部分-訓(xùn)練鑒別器
回想一下,訓(xùn)練鑒別器的目的是最大程度地提高將給定輸入正確分類(lèi)為真實(shí)或偽造的可能性。 關(guān)于古德費(fèi)羅,我們希望“通過(guò)提高隨機(jī)梯度來(lái)更新鑒別器”。 實(shí)際上,我們要最大化
。 由于 ganhacks 提出了單獨(dú)的小批量建議,因此我們將分兩步進(jìn)行計(jì)算。 首先,我們將從訓(xùn)練集中構(gòu)造一批真實(shí)樣本,向前通過(guò)
,計(jì)算損失(
),然后在向后通過(guò)中計(jì)算梯度。 其次,我們將使用電流發(fā)生器構(gòu)造一批假樣本,將這批樣本通過(guò)
正向傳遞,計(jì)算損失(
),然后向后傳遞累積梯度。 現(xiàn)在,利用從所有真實(shí)批次和所有偽批次累積的漸變,我們將其稱(chēng)為“鑒別器”優(yōu)化器的一個(gè)步驟。
第 2 部分-訓(xùn)練發(fā)電機(jī)
如原始論文所述,我們希望通過(guò)最小化
來(lái)訓(xùn)練 Generator,以產(chǎn)生更好的假貨。 如前所述,Goodfellow 指出這不能提供足夠的梯度,尤其是在學(xué)習(xí)過(guò)程的早期。 作為解決方法,我們改為希望最大化
。 在代碼中,我們通過(guò)以下步驟來(lái)實(shí)現(xiàn)此目的:將第 1 部分的 Generator 輸出與 Discriminator 進(jìn)行分類(lèi),使用實(shí)數(shù)標(biāo)簽 GT 計(jì)算 G 的損耗,反向計(jì)算 G 的梯度,最后使用優(yōu)化器更新 G 的參數(shù) 步。 將真實(shí)標(biāo)簽用作損失函數(shù)的 GT 標(biāo)簽似乎違反直覺(jué),但這使我們可以使用 BCELoss 的
部分(而不是
部分),這正是我們想要的。
最后,我們將進(jìn)行一些統(tǒng)計(jì)報(bào)告,并在每個(gè)時(shí)期結(jié)束時(shí),將我們的 fixed_noise 批次推入生成器,以直觀地跟蹤 G 的訓(xùn)練進(jìn)度。 報(bào)告的訓(xùn)練統(tǒng)計(jì)數(shù)據(jù)是:
注意:此步驟可能需要一段時(shí)間,具體取決于您運(yùn)行了多少個(gè)時(shí)期以及是否從數(shù)據(jù)集中刪除了一些數(shù)據(jù)。
# Training Loop
## Lists to keep track of progress
img_list = []
G_losses = []
D_losses = []
iters = 0
print("Starting Training Loop...")
## For each epoch
for epoch in range(num_epochs):
# For each batch in the dataloader
for i, data in enumerate(dataloader, 0):
############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
## Train with all-real batch
netD.zero_grad()
# Format batch
real_cpu = data[0].to(device)
b_size = real_cpu.size(0)
label = torch.full((b_size,), real_label, device=device)
# Forward pass real batch through D
output = netD(real_cpu).view(-1)
# Calculate loss on all-real batch
errD_real = criterion(output, label)
# Calculate gradients for D in backward pass
errD_real.backward()
D_x = output.mean().item()
## Train with all-fake batch
# Generate batch of latent vectors
noise = torch.randn(b_size, nz, 1, 1, device=device)
# Generate fake image batch with G
fake = netG(noise)
label.fill_(fake_label)
# Classify all fake batch with D
output = netD(fake.detach()).view(-1)
# Calculate D's loss on the all-fake batch
errD_fake = criterion(output, label)
# Calculate the gradients for this batch
errD_fake.backward()
D_G_z1 = output.mean().item()
# Add the gradients from the all-real and all-fake batches
errD = errD_real + errD_fake
# Update D
optimizerD.step()
############################
# (2) Update G network: maximize log(D(G(z)))
###########################
netG.zero_grad()
label.fill_(real_label) # fake labels are real for generator cost
# Since we just updated D, perform another forward pass of all-fake batch through D
output = netD(fake).view(-1)
# Calculate G's loss based on this output
errG = criterion(output, label)
# Calculate gradients for G
errG.backward()
D_G_z2 = output.mean().item()
# Update G
optimizerG.step()
# Output training stats
if i % 50 == 0:
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
% (epoch, num_epochs, i, len(dataloader),
errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
# Save Losses for plotting later
G_losses.append(errG.item())
D_losses.append(errD.item())
# Check how the generator is doing by saving G's output on fixed_noise
if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()
img_list.append(vutils.make_grid(fake, padding=2, normalize=True))
iters += 1
得出:
Starting Training Loop...
[0/5][0/1583] Loss_D: 2.0937 Loss_G: 5.2060 D(x): 0.5704 D(G(z)): 0.6680 / 0.0090
[0/5][50/1583] Loss_D: 0.2073 Loss_G: 12.9653 D(x): 0.9337 D(G(z)): 0.0000 / 0.0000
[0/5][100/1583] Loss_D: 0.0364 Loss_G: 34.5761 D(x): 0.9917 D(G(z)): 0.0000 / 0.0000
[0/5][150/1583] Loss_D: 0.0078 Loss_G: 39.3111 D(x): 0.9947 D(G(z)): 0.0000 / 0.0000
[0/5][200/1583] Loss_D: 0.0029 Loss_G: 38.7681 D(x): 0.9974 D(G(z)): 0.0000 / 0.0000
[0/5][250/1583] Loss_D: 1.2861 Loss_G: 13.3356 D(x): 0.8851 D(G(z)): 0.2970 / 0.0035
[0/5][300/1583] Loss_D: 1.2933 Loss_G: 6.7655 D(x): 0.8533 D(G(z)): 0.5591 / 0.0020
[0/5][350/1583] Loss_D: 0.7473 Loss_G: 3.2617 D(x): 0.5798 D(G(z)): 0.0514 / 0.0483
[0/5][400/1583] Loss_D: 0.5454 Loss_G: 4.0144 D(x): 0.8082 D(G(z)): 0.2346 / 0.0310
[0/5][450/1583] Loss_D: 1.1872 Loss_G: 3.2918 D(x): 0.4389 D(G(z)): 0.0360 / 0.0858
[0/5][500/1583] Loss_D: 0.7546 Loss_G: 4.7428 D(x): 0.9072 D(G(z)): 0.4049 / 0.0178
[0/5][550/1583] Loss_D: 0.3514 Loss_G: 3.7726 D(x): 0.8937 D(G(z)): 0.1709 / 0.0394
[0/5][600/1583] Loss_D: 0.4400 Loss_G: 4.1662 D(x): 0.7768 D(G(z)): 0.1069 / 0.0284
[0/5][650/1583] Loss_D: 0.3275 Loss_G: 4.3374 D(x): 0.8452 D(G(z)): 0.0852 / 0.0214
[0/5][700/1583] Loss_D: 0.7711 Loss_G: 5.0677 D(x): 0.9103 D(G(z)): 0.3848 / 0.0190
[0/5][750/1583] Loss_D: 0.5346 Loss_G: 5.7441 D(x): 0.8971 D(G(z)): 0.2969 / 0.0064
[0/5][800/1583] Loss_D: 0.5027 Loss_G: 2.5982 D(x): 0.6897 D(G(z)): 0.0431 / 0.1196
[0/5][850/1583] Loss_D: 0.4479 Loss_G: 4.8790 D(x): 0.7407 D(G(z)): 0.0456 / 0.0200
[0/5][900/1583] Loss_D: 0.9812 Loss_G: 5.8792 D(x): 0.8895 D(G(z)): 0.4801 / 0.0070
[0/5][950/1583] Loss_D: 0.5154 Loss_G: 3.4813 D(x): 0.7722 D(G(z)): 0.1549 / 0.0449
[0/5][1000/1583] Loss_D: 0.8468 Loss_G: 6.6179 D(x): 0.8914 D(G(z)): 0.4262 / 0.0030
[0/5][1050/1583] Loss_D: 0.4425 Loss_G: 3.9902 D(x): 0.8307 D(G(z)): 0.1872 / 0.0270
[0/5][1100/1583] Loss_D: 0.6800 Loss_G: 4.3945 D(x): 0.8244 D(G(z)): 0.3022 / 0.0223
[0/5][1150/1583] Loss_D: 0.7227 Loss_G: 2.2669 D(x): 0.6177 D(G(z)): 0.0625 / 0.1613
[0/5][1200/1583] Loss_D: 0.4061 Loss_G: 5.7088 D(x): 0.9269 D(G(z)): 0.2367 / 0.0071
[0/5][1250/1583] Loss_D: 0.8514 Loss_G: 3.8994 D(x): 0.7686 D(G(z)): 0.3573 / 0.0330
[0/5][1300/1583] Loss_D: 0.5323 Loss_G: 3.0046 D(x): 0.7102 D(G(z)): 0.0742 / 0.1138
[0/5][1350/1583] Loss_D: 0.5793 Loss_G: 4.6804 D(x): 0.8722 D(G(z)): 0.2877 / 0.0169
[0/5][1400/1583] Loss_D: 0.6849 Loss_G: 5.4391 D(x): 0.8974 D(G(z)): 0.3630 / 0.0100
[0/5][1450/1583] Loss_D: 1.1515 Loss_G: 6.0096 D(x): 0.8054 D(G(z)): 0.5186 / 0.0049
[0/5][1500/1583] Loss_D: 0.4771 Loss_G: 3.3768 D(x): 0.8590 D(G(z)): 0.2357 / 0.0541
[0/5][1550/1583] Loss_D: 0.6947 Loss_G: 5.9660 D(x): 0.8989 D(G(z)): 0.3671 / 0.0064
[1/5][0/1583] Loss_D: 0.5001 Loss_G: 3.9243 D(x): 0.8238 D(G(z)): 0.2077 / 0.0377
[1/5][50/1583] Loss_D: 0.4494 Loss_G: 4.4726 D(x): 0.8514 D(G(z)): 0.2159 / 0.0187
[1/5][100/1583] Loss_D: 0.4519 Loss_G: 2.6781 D(x): 0.7331 D(G(z)): 0.0688 / 0.0948
[1/5][150/1583] Loss_D: 0.3808 Loss_G: 3.6005 D(x): 0.8827 D(G(z)): 0.1908 / 0.0456
[1/5][200/1583] Loss_D: 0.4373 Loss_G: 4.0625 D(x): 0.8281 D(G(z)): 0.1719 / 0.0306
[1/5][250/1583] Loss_D: 0.5906 Loss_G: 3.1507 D(x): 0.7603 D(G(z)): 0.1952 / 0.0682
[1/5][300/1583] Loss_D: 1.4315 Loss_G: 6.2042 D(x): 0.9535 D(G(z)): 0.6480 / 0.0051
[1/5][350/1583] Loss_D: 0.8529 Loss_G: 1.2236 D(x): 0.5291 D(G(z)): 0.0552 / 0.3978
[1/5][400/1583] Loss_D: 0.8166 Loss_G: 5.3178 D(x): 0.8460 D(G(z)): 0.3872 / 0.0104
[1/5][450/1583] Loss_D: 0.6699 Loss_G: 2.4998 D(x): 0.6921 D(G(z)): 0.1719 / 0.1220
[1/5][500/1583] Loss_D: 0.4986 Loss_G: 4.3763 D(x): 0.8835 D(G(z)): 0.2643 / 0.0212
[1/5][550/1583] Loss_D: 0.9149 Loss_G: 5.6209 D(x): 0.9476 D(G(z)): 0.5069 / 0.0088
[1/5][600/1583] Loss_D: 0.5116 Loss_G: 3.4946 D(x): 0.8368 D(G(z)): 0.2444 / 0.0488
[1/5][650/1583] Loss_D: 0.4408 Loss_G: 2.8180 D(x): 0.7795 D(G(z)): 0.1262 / 0.0926
[1/5][700/1583] Loss_D: 0.3821 Loss_G: 3.5735 D(x): 0.8237 D(G(z)): 0.1387 / 0.0432
[1/5][750/1583] Loss_D: 0.5042 Loss_G: 2.4218 D(x): 0.6897 D(G(z)): 0.0541 / 0.1319
[1/5][800/1583] Loss_D: 1.3208 Loss_G: 4.7094 D(x): 0.9466 D(G(z)): 0.5988 / 0.0158
[1/5][850/1583] Loss_D: 0.3780 Loss_G: 2.9969 D(x): 0.8475 D(G(z)): 0.1662 / 0.0648
[1/5][900/1583] Loss_D: 0.4350 Loss_G: 3.2726 D(x): 0.8306 D(G(z)): 0.1925 / 0.0531
[1/5][950/1583] Loss_D: 0.4228 Loss_G: 2.5205 D(x): 0.7438 D(G(z)): 0.0493 / 0.1090
[1/5][1000/1583] Loss_D: 0.4680 Loss_G: 4.4448 D(x): 0.8652 D(G(z)): 0.2433 / 0.0190
[1/5][1050/1583] Loss_D: 0.4261 Loss_G: 2.7076 D(x): 0.7683 D(G(z)): 0.1049 / 0.0999
[1/5][1100/1583] Loss_D: 0.5115 Loss_G: 1.9458 D(x): 0.6730 D(G(z)): 0.0449 / 0.2070
[1/5][1150/1583] Loss_D: 0.6619 Loss_G: 2.0092 D(x): 0.6320 D(G(z)): 0.1115 / 0.1926
[1/5][1200/1583] Loss_D: 0.4824 Loss_G: 2.0529 D(x): 0.7735 D(G(z)): 0.1647 / 0.1758
[1/5][1250/1583] Loss_D: 0.4529 Loss_G: 4.3564 D(x): 0.9270 D(G(z)): 0.2881 / 0.0223
[1/5][1300/1583] Loss_D: 0.5469 Loss_G: 2.5909 D(x): 0.7217 D(G(z)): 0.1403 / 0.1101
[1/5][1350/1583] Loss_D: 0.4525 Loss_G: 1.4998 D(x): 0.7336 D(G(z)): 0.0904 / 0.2715
[1/5][1400/1583] Loss_D: 0.5267 Loss_G: 2.3458 D(x): 0.7594 D(G(z)): 0.1700 / 0.1311
[1/5][1450/1583] Loss_D: 0.4700 Loss_G: 3.7640 D(x): 0.9059 D(G(z)): 0.2852 / 0.0316
[1/5][1500/1583] Loss_D: 0.7703 Loss_G: 1.4253 D(x): 0.5655 D(G(z)): 0.0683 / 0.3071
[1/5][1550/1583] Loss_D: 0.5535 Loss_G: 2.4315 D(x): 0.6773 D(G(z)): 0.0834 / 0.1280
[2/5][0/1583] Loss_D: 0.7237 Loss_G: 3.4642 D(x): 0.8383 D(G(z)): 0.3687 / 0.0442
[2/5][50/1583] Loss_D: 0.4401 Loss_G: 2.4749 D(x): 0.7939 D(G(z)): 0.1526 / 0.1107
[2/5][100/1583] Loss_D: 0.7470 Loss_G: 1.8611 D(x): 0.5830 D(G(z)): 0.0871 / 0.2102
[2/5][150/1583] Loss_D: 0.7930 Loss_G: 1.3743 D(x): 0.5201 D(G(z)): 0.0343 / 0.3171
[2/5][200/1583] Loss_D: 0.5059 Loss_G: 2.9394 D(x): 0.8044 D(G(z)): 0.2128 / 0.0739
[2/5][250/1583] Loss_D: 0.5873 Loss_G: 1.6961 D(x): 0.6329 D(G(z)): 0.0561 / 0.2297
[2/5][300/1583] Loss_D: 0.5341 Loss_G: 1.9229 D(x): 0.7022 D(G(z)): 0.1145 / 0.1921
[2/5][350/1583] Loss_D: 0.7095 Loss_G: 1.3619 D(x): 0.5855 D(G(z)): 0.0707 / 0.3038
[2/5][400/1583] Loss_D: 0.5163 Loss_G: 3.0209 D(x): 0.8695 D(G(z)): 0.2828 / 0.0657
[2/5][450/1583] Loss_D: 0.5413 Loss_G: 3.5822 D(x): 0.8450 D(G(z)): 0.2748 / 0.0387
[2/5][500/1583] Loss_D: 0.4929 Loss_G: 2.1009 D(x): 0.7645 D(G(z)): 0.1692 / 0.1552
[2/5][550/1583] Loss_D: 0.5042 Loss_G: 2.5833 D(x): 0.7047 D(G(z)): 0.0888 / 0.1107
[2/5][600/1583] Loss_D: 0.4562 Loss_G: 2.5190 D(x): 0.8316 D(G(z)): 0.2151 / 0.0987
[2/5][650/1583] Loss_D: 0.9564 Loss_G: 2.5315 D(x): 0.7157 D(G(z)): 0.3861 / 0.1153
[2/5][700/1583] Loss_D: 0.6706 Loss_G: 3.0991 D(x): 0.7382 D(G(z)): 0.2497 / 0.0603
[2/5][750/1583] Loss_D: 0.5803 Loss_G: 2.9059 D(x): 0.7523 D(G(z)): 0.2092 / 0.0785
[2/5][800/1583] Loss_D: 0.8315 Loss_G: 3.7972 D(x): 0.9184 D(G(z)): 0.4829 / 0.0325
[2/5][850/1583] Loss_D: 0.6177 Loss_G: 2.2548 D(x): 0.7526 D(G(z)): 0.2470 / 0.1306
[2/5][900/1583] Loss_D: 0.7398 Loss_G: 3.2303 D(x): 0.8604 D(G(z)): 0.3999 / 0.0572
[2/5][950/1583] Loss_D: 0.7914 Loss_G: 1.5464 D(x): 0.6001 D(G(z)): 0.1507 / 0.2605
[2/5][1000/1583] Loss_D: 0.9693 Loss_G: 4.0590 D(x): 0.9251 D(G(z)): 0.5270 / 0.0275
[2/5][1050/1583] Loss_D: 0.5805 Loss_G: 2.1703 D(x): 0.6749 D(G(z)): 0.1185 / 0.1465
[2/5][1100/1583] Loss_D: 0.8626 Loss_G: 0.9626 D(x): 0.5259 D(G(z)): 0.0865 / 0.4571
[2/5][1150/1583] Loss_D: 0.7256 Loss_G: 4.0511 D(x): 0.9135 D(G(z)): 0.4172 / 0.0300
[2/5][1200/1583] Loss_D: 0.5937 Loss_G: 3.8598 D(x): 0.8982 D(G(z)): 0.3440 / 0.0320
[2/5][1250/1583] Loss_D: 0.6144 Loss_G: 1.8087 D(x): 0.6660 D(G(z)): 0.1424 / 0.2062
[2/5][1300/1583] Loss_D: 0.8017 Loss_G: 1.2032 D(x): 0.5450 D(G(z)): 0.0746 / 0.3562
[2/5][1350/1583] Loss_D: 0.7563 Loss_G: 1.6629 D(x): 0.6002 D(G(z)): 0.1437 / 0.2351
[2/5][1400/1583] Loss_D: 0.7457 Loss_G: 1.5831 D(x): 0.6069 D(G(z)): 0.1493 / 0.2511
[2/5][1450/1583] Loss_D: 0.6697 Loss_G: 2.8194 D(x): 0.7597 D(G(z)): 0.2677 / 0.0804
[2/5][1500/1583] Loss_D: 0.5681 Loss_G: 2.2054 D(x): 0.7171 D(G(z)): 0.1626 / 0.1358
[2/5][1550/1583] Loss_D: 0.6741 Loss_G: 2.9537 D(x): 0.8373 D(G(z)): 0.3492 / 0.0760
[3/5][0/1583] Loss_D: 1.0265 Loss_G: 1.1510 D(x): 0.4474 D(G(z)): 0.0685 / 0.3681
[3/5][50/1583] Loss_D: 0.6190 Loss_G: 1.9895 D(x): 0.7136 D(G(z)): 0.1900 / 0.1705
[3/5][100/1583] Loss_D: 0.7754 Loss_G: 3.2350 D(x): 0.8117 D(G(z)): 0.3782 / 0.0535
[3/5][150/1583] Loss_D: 1.8367 Loss_G: 5.1895 D(x): 0.9408 D(G(z)): 0.7750 / 0.0095
[3/5][200/1583] Loss_D: 0.6821 Loss_G: 2.4254 D(x): 0.7709 D(G(z)): 0.3020 / 0.1152
[3/5][250/1583] Loss_D: 1.1273 Loss_G: 4.2718 D(x): 0.9373 D(G(z)): 0.5970 / 0.0206
[3/5][300/1583] Loss_D: 0.5944 Loss_G: 2.2868 D(x): 0.7547 D(G(z)): 0.2306 / 0.1256
[3/5][350/1583] Loss_D: 0.7941 Loss_G: 3.4394 D(x): 0.7585 D(G(z)): 0.3472 / 0.0437
[3/5][400/1583] Loss_D: 0.7588 Loss_G: 3.7067 D(x): 0.8416 D(G(z)): 0.3981 / 0.0347
[3/5][450/1583] Loss_D: 0.7671 Loss_G: 2.7477 D(x): 0.7932 D(G(z)): 0.3686 / 0.0823
[3/5][500/1583] Loss_D: 1.0295 Loss_G: 1.6097 D(x): 0.6318 D(G(z)): 0.3568 / 0.2429
[3/5][550/1583] Loss_D: 0.5186 Loss_G: 2.1037 D(x): 0.7998 D(G(z)): 0.2266 / 0.1473
[3/5][600/1583] Loss_D: 0.5855 Loss_G: 1.9740 D(x): 0.6520 D(G(z)): 0.0972 / 0.1770
[3/5][650/1583] Loss_D: 0.5954 Loss_G: 2.2880 D(x): 0.7819 D(G(z)): 0.2611 / 0.1234
[3/5][700/1583] Loss_D: 1.0706 Loss_G: 1.1761 D(x): 0.4335 D(G(z)): 0.0681 / 0.3609
[3/5][750/1583] Loss_D: 0.7128 Loss_G: 1.5402 D(x): 0.5909 D(G(z)): 0.0993 / 0.2702
[3/5][800/1583] Loss_D: 0.8883 Loss_G: 2.4234 D(x): 0.8035 D(G(z)): 0.4176 / 0.1206
[3/5][850/1583] Loss_D: 0.7085 Loss_G: 2.7516 D(x): 0.7502 D(G(z)): 0.2918 / 0.0878
[3/5][900/1583] Loss_D: 0.8472 Loss_G: 3.5935 D(x): 0.8553 D(G(z)): 0.4403 / 0.0397
[3/5][950/1583] Loss_D: 0.4454 Loss_G: 2.3438 D(x): 0.7763 D(G(z)): 0.1519 / 0.1226
[3/5][1000/1583] Loss_D: 1.2425 Loss_G: 1.0600 D(x): 0.3930 D(G(z)): 0.0889 / 0.4122
[3/5][1050/1583] Loss_D: 1.0465 Loss_G: 1.4973 D(x): 0.4618 D(G(z)): 0.1165 / 0.2906
[3/5][1100/1583] Loss_D: 0.5885 Loss_G: 2.7760 D(x): 0.8852 D(G(z)): 0.3356 / 0.0854
[3/5][1150/1583] Loss_D: 0.5940 Loss_G: 2.5669 D(x): 0.7481 D(G(z)): 0.2109 / 0.1001
[3/5][1200/1583] Loss_D: 0.9074 Loss_G: 3.0569 D(x): 0.7762 D(G(z)): 0.4214 / 0.0644
[3/5][1250/1583] Loss_D: 0.7487 Loss_G: 3.0959 D(x): 0.8534 D(G(z)): 0.4052 / 0.0601
[3/5][1300/1583] Loss_D: 0.5956 Loss_G: 2.5807 D(x): 0.7263 D(G(z)): 0.1887 / 0.1039
[3/5][1350/1583] Loss_D: 1.7038 Loss_G: 0.6425 D(x): 0.2487 D(G(z)): 0.0507 / 0.5746
[3/5][1400/1583] Loss_D: 0.5863 Loss_G: 1.7754 D(x): 0.6609 D(G(z)): 0.1044 / 0.2069
[3/5][1450/1583] Loss_D: 0.4925 Loss_G: 2.7946 D(x): 0.7665 D(G(z)): 0.1660 / 0.0864
[3/5][1500/1583] Loss_D: 0.6616 Loss_G: 2.9829 D(x): 0.9091 D(G(z)): 0.3944 / 0.0654
[3/5][1550/1583] Loss_D: 1.2097 Loss_G: 1.0897 D(x): 0.4433 D(G(z)): 0.1887 / 0.3918
[4/5][0/1583] Loss_D: 0.5653 Loss_G: 2.1567 D(x): 0.6781 D(G(z)): 0.1105 / 0.1464
[4/5][50/1583] Loss_D: 0.7300 Loss_G: 1.7770 D(x): 0.7472 D(G(z)): 0.3011 / 0.2104
[4/5][100/1583] Loss_D: 0.5735 Loss_G: 1.7644 D(x): 0.6723 D(G(z)): 0.1219 / 0.2092
[4/5][150/1583] Loss_D: 1.0598 Loss_G: 0.6708 D(x): 0.4336 D(G(z)): 0.0800 / 0.5560
[4/5][200/1583] Loss_D: 0.6098 Loss_G: 2.0432 D(x): 0.6658 D(G(z)): 0.1378 / 0.1655
[4/5][250/1583] Loss_D: 0.7227 Loss_G: 1.6686 D(x): 0.5750 D(G(z)): 0.0759 / 0.2371
[4/5][300/1583] Loss_D: 0.8077 Loss_G: 2.7966 D(x): 0.7647 D(G(z)): 0.3703 / 0.0771
[4/5][350/1583] Loss_D: 0.7086 Loss_G: 1.3171 D(x): 0.5890 D(G(z)): 0.1103 / 0.3079
[4/5][400/1583] Loss_D: 0.6418 Loss_G: 2.3383 D(x): 0.6284 D(G(z)): 0.1060 / 0.1303
[4/5][450/1583] Loss_D: 0.7046 Loss_G: 3.6138 D(x): 0.8926 D(G(z)): 0.4057 / 0.0354
[4/5][500/1583] Loss_D: 1.7355 Loss_G: 2.1156 D(x): 0.5473 D(G(z)): 0.4802 / 0.2431
[4/5][550/1583] Loss_D: 0.6479 Loss_G: 2.5634 D(x): 0.7987 D(G(z)): 0.3139 / 0.0956
[4/5][600/1583] Loss_D: 0.5650 Loss_G: 1.9429 D(x): 0.6772 D(G(z)): 0.1203 / 0.1713
[4/5][650/1583] Loss_D: 0.9440 Loss_G: 3.2048 D(x): 0.7789 D(G(z)): 0.4225 / 0.0533
[4/5][700/1583] Loss_D: 0.5745 Loss_G: 2.5296 D(x): 0.7004 D(G(z)): 0.1496 / 0.1075
[4/5][750/1583] Loss_D: 0.7448 Loss_G: 1.5417 D(x): 0.5864 D(G(z)): 0.1132 / 0.2617
[4/5][800/1583] Loss_D: 0.5315 Loss_G: 2.4287 D(x): 0.7047 D(G(z)): 0.1254 / 0.1159
[4/5][850/1583] Loss_D: 1.1006 Loss_G: 0.9708 D(x): 0.4101 D(G(z)): 0.0549 / 0.4226
[4/5][900/1583] Loss_D: 0.8635 Loss_G: 1.1581 D(x): 0.5057 D(G(z)): 0.0711 / 0.3618
[4/5][950/1583] Loss_D: 0.5915 Loss_G: 2.8714 D(x): 0.8364 D(G(z)): 0.3005 / 0.0727
[4/5][1000/1583] Loss_D: 1.5283 Loss_G: 0.4922 D(x): 0.2847 D(G(z)): 0.0228 / 0.6394
[4/5][1050/1583] Loss_D: 0.7626 Loss_G: 1.7556 D(x): 0.5865 D(G(z)): 0.1282 / 0.2159
[4/5][1100/1583] Loss_D: 0.6571 Loss_G: 1.7024 D(x): 0.6470 D(G(z)): 0.1505 / 0.2243
[4/5][1150/1583] Loss_D: 0.7735 Loss_G: 1.2737 D(x): 0.5851 D(G(z)): 0.1427 / 0.3350
[4/5][1200/1583] Loss_D: 0.4104 Loss_G: 3.2208 D(x): 0.8835 D(G(z)): 0.2290 / 0.0520
[4/5][1250/1583] Loss_D: 0.4898 Loss_G: 2.1841 D(x): 0.7873 D(G(z)): 0.1912 / 0.1451
[4/5][1300/1583] Loss_D: 0.6657 Loss_G: 2.5232 D(x): 0.6504 D(G(z)): 0.1283 / 0.1273
[4/5][1350/1583] Loss_D: 1.0126 Loss_G: 4.9254 D(x): 0.9131 D(G(z)): 0.5439 / 0.0115
[4/5][1400/1583] Loss_D: 1.2293 Loss_G: 5.6073 D(x): 0.9281 D(G(z)): 0.6209 / 0.0062
[4/5][1450/1583] Loss_D: 0.3908 Loss_G: 2.4251 D(x): 0.7873 D(G(z)): 0.1181 / 0.1124
[4/5][1500/1583] Loss_D: 1.1000 Loss_G: 0.9861 D(x): 0.4594 D(G(z)): 0.1542 / 0.4324
[4/5][1550/1583] Loss_D: 0.9504 Loss_G: 3.8109 D(x): 0.9275 D(G(z)): 0.5386 / 0.0277
最后,讓我們看看我們是如何做到的。 在這里,我們將看三個(gè)不同的結(jié)果。 首先,我們將了解 D 和 G 的損失在訓(xùn)練過(guò)程中如何變化。 其次,我們將在每個(gè)時(shí)期將 G 的輸出顯示為 fixed_noise 批次。 第三,我們將查看一批真實(shí)數(shù)據(jù)和來(lái)自 G 的一批偽數(shù)據(jù)。
損失與訓(xùn)練迭代
下面是 D & G 的損失與訓(xùn)練迭代的關(guān)系圖。
plt.figure(figsize=(10,5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses,label="G")
plt.plot(D_losses,label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()
可視化 G 的進(jìn)度
請(qǐng)記住,在每次訓(xùn)練之后,我們?nèi)绾螌⑸善鞯妮敵霰4鏋?fixed_noise 批次。 現(xiàn)在,我們可以用動(dòng)畫(huà)形象化 G 的訓(xùn)練進(jìn)度。 按下播放按鈕開(kāi)始動(dòng)畫(huà)。
#%%capture
fig = plt.figure(figsize=(8,8))
plt.axis("off")
ims = [[plt.imshow(np.transpose(i,(1,2,0)), animated=True)] for i in img_list]
ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True)
HTML(ani.to_jshtml())
實(shí)像與假像
最后,讓我們并排查看一些真實(shí)圖像和偽圖像。
# Grab a batch of real images from the dataloader
real_batch = next(iter(dataloader))
## Plot the real images
plt.figure(figsize=(15,15))
plt.subplot(1,2,1)
plt.axis("off")
plt.title("Real Images")
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device)[:64], padding=5, normalize=True).cpu(),(1,2,0)))
## Plot the fake images from the last epoch
plt.subplot(1,2,2)
plt.axis("off")
plt.title("Fake Images")
plt.imshow(np.transpose(img_list[-1],(1,2,0)))
plt.show()
我們已經(jīng)走到了旅程的盡頭,但是您可以從這里到達(dá)幾個(gè)地方。 你可以:
腳本的總運(yùn)行時(shí)間:(28 分鐘 39.288 秒)
Download Python source code: dcgan_faces_tutorial.py
Download Jupyter notebook: dcgan_faces_tutorial.ipynb
由獅身人面像畫(huà)廊生成的畫(huà)廊
更多建議: