原文: https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html
本教程介紹了如何使用torchtext
中的文本分類數(shù)據(jù)集,包括
- AG_NEWS,
- SogouNews,
- DBpedia,
- YelpReviewPolarity,
- YelpReviewFull,
- YahooAnswers,
- AmazonReviewPolarity,
- AmazonReviewFull
本示例說明了如何使用這些TextClassification
數(shù)據(jù)集之一訓(xùn)練用于分類的監(jiān)督學(xué)習(xí)算法。
一些 ngrams 功能用于捕獲有關(guān)本地單詞順序的一些部分信息。 在實踐中,應(yīng)用二元語法或三元語法作為單詞組比僅僅一個單詞提供更多的好處。 一個例子:
"load data with ngrams"
Bi-grams results: "load data", "data with", "with ngrams"
Tri-grams results: "load data with", "data with ngrams"
TextClassification
數(shù)據(jù)集支持 ngrams 方法。 通過將 ngrams 設(shè)置為 2,數(shù)據(jù)集中的示例文本將是一個單字加 bi-grams 字符串的列表。
import torch
import torchtext
from torchtext.datasets import text_classification
NGRAMS = 2
import os
if not os.path.isdir('./.data'):
os.mkdir('./.data')
train_dataset, test_dataset = text_classification.DATASETS['AG_NEWS'](
root='./.data', ngrams=NGRAMS, vocab=None)
BATCH_SIZE = 16
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
該模型由 EmbeddingBag 層和線性層組成(請參見下圖)。 nn.EmbeddingBag
計算嵌入“袋”的平均值。 此處的文本條目具有不同的長度。 nn.EmbeddingBag
此處不需要填充,因為文本長度以偏移量保存。
另外,由于nn.EmbeddingBag
會動態(tài)累積嵌入中的平均值,因此nn.EmbeddingBag
可以提高性能和存儲效率,以處理張量序列。
import torch.nn as nn
import torch.nn.functional as F
class TextSentiment(nn.Module):
def __init__(self, vocab_size, embed_dim, num_class):
super().__init__()
self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=True)
self.fc = nn.Linear(embed_dim, num_class)
self.init_weights()
def init_weights(self):
initrange = 0.5
self.embedding.weight.data.uniform_(-initrange, initrange)
self.fc.weight.data.uniform_(-initrange, initrange)
self.fc.bias.data.zero_()
def forward(self, text, offsets):
embedded = self.embedding(text, offsets)
return self.fc(embedded)
AG_NEWS 數(shù)據(jù)集具有四個標(biāo)簽,因此類別數(shù)是四個。
1 : World
2 : Sports
3 : Business
4 : Sci/Tec
詞匯的大小等于詞匯的長度(包括單個單詞和 ngram)。 類的數(shù)量等于標(biāo)簽的數(shù)量,在 AG_NEWS 情況下為 4。
VOCAB_SIZE = len(train_dataset.get_vocab())
EMBED_DIM = 32
NUN_CLASS = len(train_dataset.get_labels())
model = TextSentiment(VOCAB_SIZE, EMBED_DIM, NUN_CLASS).to(device)
由于文本條目的長度不同,因此使用自定義函數(shù) generate_batch()
生成數(shù)據(jù)批和偏移量。 該功能將傳遞到torch.utils.data.DataLoader
中的collate_fn
。 collate_fn
的輸入是張量為 list_batch_size 的張量列表,collate_fn
函數(shù)將它們打包成一個小批量。 請注意此處,并確保將collate_fn
聲明為頂級
def。 這樣可以確保該功能在每個工作程序中均可用。
原始數(shù)據(jù)批處理輸入中的文本條目打包到一個列表中,并作為單個張量級聯(lián),作為nn.EmbeddingBag
的輸入。 偏移量是定界符的張量,表示文本張量中各個序列的起始索引。 Label 是一個張量,用于保存單個文本條目的標(biāo)簽。
def generate_batch(batch):
label = torch.tensor([entry[0] for entry in batch])
text = [entry[1] for entry in batch]
offsets = [0] + [len(entry) for entry in text]
# torch.Tensor.cumsum returns the cumulative sum
# of elements in the dimension dim.
# torch.Tensor([1.0, 2.0, 3.0]).cumsum(dim=0)
offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)
text = torch.cat(text)
return text, offsets, label
建議 PyTorch 用戶使用 torch.utils.data.DataLoader ,它可以輕松地并行加載數(shù)據(jù)(教程為,此處為)。 我們在此處使用DataLoader
加載 AG_NEWS 數(shù)據(jù)集并將其發(fā)送到模型以進(jìn)行訓(xùn)練/驗證。
from torch.utils.data import DataLoader
def train_func(sub_train_):
# Train the model
train_loss = 0
train_acc = 0
data = DataLoader(sub_train_, batch_size=BATCH_SIZE, shuffle=True,
collate_fn=generate_batch)
for i, (text, offsets, cls) in enumerate(data):
optimizer.zero_grad()
text, offsets, cls = text.to(device), offsets.to(device), cls.to(device)
output = model(text, offsets)
loss = criterion(output, cls)
train_loss += loss.item()
loss.backward()
optimizer.step()
train_acc += (output.argmax(1) == cls).sum().item()
# Adjust the learning rate
scheduler.step()
return train_loss / len(sub_train_), train_acc / len(sub_train_)
def test(data_):
loss = 0
acc = 0
data = DataLoader(data_, batch_size=BATCH_SIZE, collate_fn=generate_batch)
for text, offsets, cls in data:
text, offsets, cls = text.to(device), offsets.to(device), cls.to(device)
with torch.no_grad():
output = model(text, offsets)
loss = criterion(output, cls)
loss += loss.item()
acc += (output.argmax(1) == cls).sum().item()
return loss / len(data_), acc / len(data_)
由于原始 AG_NEWS 沒有有效的數(shù)據(jù)集,因此我們將訓(xùn)練數(shù)據(jù)集分為訓(xùn)練/有效集,其分割比率為 0.95(訓(xùn)練)和 0.05(有效)。 在這里,我們在 PyTorch 核心庫中使用 torch.utils.data.dataset.random_split 函數(shù)。
CrossEntropyLoss 標(biāo)準(zhǔn)將 nn.LogSoftmax()和 nn.NLLLoss()合并到一個類中。 在訓(xùn)練帶有 C 類的分類問題時很有用。 SGD 實現(xiàn)了隨機(jī)梯度下降方法作為優(yōu)化程序。 初始學(xué)習(xí)率設(shè)置為 4.0。 StepLR 在此處用于通過歷時調(diào)整學(xué)習(xí)率。
import time
from torch.utils.data.dataset import random_split
N_EPOCHS = 5
min_valid_loss = float('inf')
criterion = torch.nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.SGD(model.parameters(), lr=4.0)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1, gamma=0.9)
train_len = int(len(train_dataset) * 0.95)
sub_train_, sub_valid_ = \
random_split(train_dataset, [train_len, len(train_dataset) - train_len])
for epoch in range(N_EPOCHS):
start_time = time.time()
train_loss, train_acc = train_func(sub_train_)
valid_loss, valid_acc = test(sub_valid_)
secs = int(time.time() - start_time)
mins = secs / 60
secs = secs % 60
print('Epoch: %d' %(epoch + 1), " | time in %d minutes, %d seconds" %(mins, secs))
print(f'\tLoss: {train_loss:.4f}(train)\t|\tAcc: {train_acc * 100:.1f}%(train)')
print(f'\tLoss: {valid_loss:.4f}(valid)\t|\tAcc: {valid_acc * 100:.1f}%(valid)')
得出:
Epoch: 1 | time in 0 minutes, 9 seconds
Loss: 0.0263(train) | Acc: 84.6%(train)
Loss: 0.0000(valid) | Acc: 90.1%(valid)
Epoch: 2 | time in 0 minutes, 9 seconds
Loss: 0.0120(train) | Acc: 93.6%(train)
Loss: 0.0001(valid) | Acc: 91.4%(valid)
Epoch: 3 | time in 0 minutes, 9 seconds
Loss: 0.0070(train) | Acc: 96.4%(train)
Loss: 0.0001(valid) | Acc: 91.7%(valid)
Epoch: 4 | time in 0 minutes, 9 seconds
Loss: 0.0039(train) | Acc: 98.0%(train)
Loss: 0.0001(valid) | Acc: 91.4%(valid)
Epoch: 5 | time in 0 minutes, 9 seconds
Loss: 0.0023(train) | Acc: 99.0%(train)
Loss: 0.0001(valid) | Acc: 91.7%(valid)
使用以下信息在 GPU 上運(yùn)行模型:
紀(jì)元:1 | 時間在 0 分鐘 11 秒
Loss: 0.0263(train) | Acc: 84.5%(train)
Loss: 0.0001(valid) | Acc: 89.0%(valid)
紀(jì)元:2 | 時間在 0 分鐘 10 秒內(nèi)
Loss: 0.0119(train) | Acc: 93.6%(train)
Loss: 0.0000(valid) | Acc: 89.6%(valid)
紀(jì)元:3 | 時間在 0 分鐘 9 秒
Loss: 0.0069(train) | Acc: 96.4%(train)
Loss: 0.0000(valid) | Acc: 90.5%(valid)
紀(jì)元:4 | 時間在 0 分鐘 11 秒
Loss: 0.0038(train) | Acc: 98.2%(train)
Loss: 0.0000(valid) | Acc: 90.4%(valid)
紀(jì)元:5 | 時間在 0 分鐘 11 秒
Loss: 0.0022(train) | Acc: 99.0%(train)
Loss: 0.0000(valid) | Acc: 91.0%(valid)
print('Checking the results of test dataset...')
test_loss, test_acc = test(test_dataset)
print(f'\tLoss: {test_loss:.4f}(test)\t|\tAcc: {test_acc * 100:.1f}%(test)')
得出:
Checking the results of test dataset...
Loss: 0.0003(test) | Acc: 91.1%(test)
正在檢查測試數(shù)據(jù)集的結(jié)果…
Loss: 0.0237(test) | Acc: 90.5%(test)
使用到目前為止最好的模型并測試高爾夫新聞。 標(biāo)簽信息在可用。
import re
from torchtext.data.utils import ngrams_iterator
from torchtext.data.utils import get_tokenizer
ag_news_label = {1 : "World",
2 : "Sports",
3 : "Business",
4 : "Sci/Tec"}
def predict(text, model, vocab, ngrams):
tokenizer = get_tokenizer("basic_english")
with torch.no_grad():
text = torch.tensor([vocab[token]
for token in ngrams_iterator(tokenizer(text), ngrams)])
output = model(text, torch.tensor([0]))
return output.argmax(1).item() + 1
ex_text_str = "MEMPHIS, Tenn. – Four days ago, Jon Rahm was \
enduring the season's worst weather conditions on Sunday at The \
Open on his way to a closing 75 at Royal Portrush, which \
considering the wind and the rain was a respectable showing. \
Thursday's first round at the WGC-FedEx St. Jude Invitational \
was another story. With temperatures in the mid-80s and hardly any \
wind, the Spaniard was 13 strokes better in a flawless round. \
Thanks to his best putting performance on the PGA Tour, Rahm \
finished with an 8-under 62 for a three-stroke lead, which \
was even more impressive considering he'd never played the \
front nine at TPC Southwind."
vocab = train_dataset.get_vocab()
model = model.to("cpu")
print("This is a %s news" %ag_news_label[predict(ex_text_str, model, vocab, 2)])
得出:
This is a Sports news
這是體育新聞
您可以在此處找到本說明中顯示的代碼示例。
腳本的總運(yùn)行時間:(1 分鐘 26.276 秒)
Download Python source code: text_sentiment_ngrams_tutorial.py
Download Jupyter notebook: text_sentiment_ngrams_tutorial.ipynb
由獅身人面像畫廊生成的畫廊
更多建議: