Go 語言 浮點(diǎn)數(shù)

2023-03-14 16:52 更新

原文鏈接:https://gopl-zh.github.io/ch3/ch3-02.html


3.2. 浮點(diǎn)數(shù)

Go語言提供了兩種精度的浮點(diǎn)數(shù),float32和float64。它們的算術(shù)規(guī)范由IEEE754浮點(diǎn)數(shù)國際標(biāo)準(zhǔn)定義,該浮點(diǎn)數(shù)規(guī)范被所有現(xiàn)代的CPU支持。

這些浮點(diǎn)數(shù)類型的取值范圍可以從很微小到很巨大。浮點(diǎn)數(shù)的范圍極限值可以在math包找到。常量math.MaxFloat32表示float32能表示的最大數(shù)值,大約是 3.4e38;對(duì)應(yīng)的math.MaxFloat64常量大約是1.8e308。它們分別能表示的最小值近似為1.4e-45和4.9e-324。

一個(gè)float32類型的浮點(diǎn)數(shù)可以提供大約6個(gè)十進(jìn)制數(shù)的精度,而float64則可以提供約15個(gè)十進(jìn)制數(shù)的精度;通常應(yīng)該優(yōu)先使用float64類型,因?yàn)閒loat32類型的累計(jì)計(jì)算誤差很容易擴(kuò)散,并且float32能精確表示的正整數(shù)并不是很大(譯注:因?yàn)閒loat32的有效bit位只有23個(gè),其它的bit位用于指數(shù)和符號(hào);當(dāng)整數(shù)大于23bit能表達(dá)的范圍時(shí),float32的表示將出現(xiàn)誤差):

var f float32 = 16777216 // 1 << 24
fmt.Println(f == f+1)    // "true"!

浮點(diǎn)數(shù)的字面值可以直接寫小數(shù)部分,像這樣:

const e = 2.71828 // (approximately)

小數(shù)點(diǎn)前面或后面的數(shù)字都可能被省略(例如.707或1.)。很小或很大的數(shù)最好用科學(xué)計(jì)數(shù)法書寫,通過e或E來指定指數(shù)部分:

const Avogadro = 6.02214129e23  // 阿伏伽德羅常數(shù)
const Planck   = 6.62606957e-34 // 普朗克常數(shù)

用Printf函數(shù)的%g參數(shù)打印浮點(diǎn)數(shù),將采用更緊湊的表示形式打印,并提供足夠的精度,但是對(duì)應(yīng)表格的數(shù)據(jù),使用%e(帶指數(shù))或%f的形式打印可能更合適。所有的這三個(gè)打印形式都可以指定打印的寬度和控制打印精度。

for x := 0; x < 8; x++ {
    fmt.Printf("x = %d e^x = %8.3f\n", x, math.Exp(float64(x)))
}

上面代碼打印e的冪,打印精度是小數(shù)點(diǎn)后三個(gè)小數(shù)精度和8個(gè)字符寬度:

x = 0       e^x =    1.000
x = 1       e^x =    2.718
x = 2       e^x =    7.389
x = 3       e^x =   20.086
x = 4       e^x =   54.598
x = 5       e^x =  148.413
x = 6       e^x =  403.429
x = 7       e^x = 1096.633

math包中除了提供大量常用的數(shù)學(xué)函數(shù)外,還提供了IEEE754浮點(diǎn)數(shù)標(biāo)準(zhǔn)中定義的特殊值的創(chuàng)建和測試:正無窮大和負(fù)無窮大,分別用于表示太大溢出的數(shù)字和除零的結(jié)果;還有NaN非數(shù),一般用于表示無效的除法操作結(jié)果0/0或Sqrt(-1).

var z float64
fmt.Println(z, -z, 1/z, -1/z, z/z) // "0 -0 +Inf -Inf NaN"

函數(shù)math.IsNaN用于測試一個(gè)數(shù)是否是非數(shù)NaN,math.NaN則返回非數(shù)對(duì)應(yīng)的值。雖然可以用math.NaN來表示一個(gè)非法的結(jié)果,但是測試一個(gè)結(jié)果是否是非數(shù)NaN則是充滿風(fēng)險(xiǎn)的,因?yàn)镹aN和任何數(shù)都是不相等的(譯注:在浮點(diǎn)數(shù)中,NaN、正無窮大和負(fù)無窮大都不是唯一的,每個(gè)都有非常多種的bit模式表示):

nan := math.NaN()
fmt.Println(nan == nan, nan < nan, nan > nan) // "false false false"

如果一個(gè)函數(shù)返回的浮點(diǎn)數(shù)結(jié)果可能失敗,最好的做法是用單獨(dú)的標(biāo)志報(bào)告失敗,像這樣:

func compute() (value float64, ok bool) {
    // ...
    if failed {
        return 0, false
    }
    return result, true
}

接下來的程序演示了通過浮點(diǎn)計(jì)算生成的圖形。它是帶有兩個(gè)參數(shù)的z = f(x, y)函數(shù)的三維形式,使用了可縮放矢量圖形(SVG)格式輸出,SVG是一個(gè)用于矢量線繪制的XML標(biāo)準(zhǔn)。圖3.1顯示了sin(r)/r函數(shù)的輸出圖形,其中r是sqrt(x*x+y*y)


gopl.io/ch3/surface

// Surface computes an SVG rendering of a 3-D surface function.
package main

import (
    "fmt"
    "math"
)

const (
    width, height = 600, 320            // canvas size in pixels
    cells         = 100                 // number of grid cells
    xyrange       = 30.0                // axis ranges (-xyrange..+xyrange)
    xyscale       = width / 2 / xyrange // pixels per x or y unit
    zscale        = height * 0.4        // pixels per z unit
    angle         = math.Pi / 6         // angle of x, y axes (=30°)
)

var sin30, cos30 = math.Sin(angle), math.Cos(angle) // sin(30°), cos(30°)

func main() {
    fmt.Printf("<svg xmlns='http://www.w3.org/2000/svg' "+
        "style='stroke: grey; fill: white; stroke-width: 0.7' "+
        "width='%d' height='%d'>", width, height)
    for i := 0; i < cells; i++ {
        for j := 0; j < cells; j++ {
            ax, ay := corner(i+1, j)
            bx, by := corner(i, j)
            cx, cy := corner(i, j+1)
            dx, dy := corner(i+1, j+1)
            fmt.Printf("<polygon points='%g,%g %g,%g %g,%g %g,%g'/>\n",
                ax, ay, bx, by, cx, cy, dx, dy)
        }
    }
    fmt.Println("</svg>")
}

func corner(i, j int) (float64, float64) {
    // Find point (x,y) at corner of cell (i,j).
    x := xyrange * (float64(i)/cells - 0.5)
    y := xyrange * (float64(j)/cells - 0.5)

    // Compute surface height z.
    z := f(x, y)

    // Project (x,y,z) isometrically onto 2-D SVG canvas (sx,sy).
    sx := width/2 + (x-y)*cos30*xyscale
    sy := height/2 + (x+y)*sin30*xyscale - z*zscale
    return sx, sy
}

func f(x, y float64) float64 {
    r := math.Hypot(x, y) // distance from (0,0)
    return math.Sin(r) / r
}

要注意的是corner函數(shù)返回了兩個(gè)結(jié)果,分別對(duì)應(yīng)每個(gè)網(wǎng)格頂點(diǎn)的坐標(biāo)參數(shù)。

要解釋這個(gè)程序是如何工作的需要一些基本的幾何學(xué)知識(shí),但是我們可以跳過幾何學(xué)原理,因?yàn)槌绦虻闹攸c(diǎn)是演示浮點(diǎn)數(shù)運(yùn)算。程序的本質(zhì)是三個(gè)不同的坐標(biāo)系中映射關(guān)系,如圖3.2所示。第一個(gè)是100x100的二維網(wǎng)格,對(duì)應(yīng)整數(shù)坐標(biāo)(i,j),從遠(yuǎn)處的(0,0)位置開始。我們從遠(yuǎn)處向前面繪制,因此遠(yuǎn)處先繪制的多邊形有可能被前面后繪制的多邊形覆蓋。

第二個(gè)坐標(biāo)系是一個(gè)三維的網(wǎng)格浮點(diǎn)坐標(biāo)(x,y,z),其中x和y是i和j的線性函數(shù),通過平移轉(zhuǎn)換為網(wǎng)格單元的中心,然后用xyrange系數(shù)縮放。高度z是函數(shù)f(x,y)的值。

第三個(gè)坐標(biāo)系是一個(gè)二維的畫布,起點(diǎn)(0,0)在左上角。畫布中點(diǎn)的坐標(biāo)用(sx,sy)表示。我們使用等角投影將三維點(diǎn)(x,y,z)投影到二維的畫布中。


畫布中從遠(yuǎn)處到右邊的點(diǎn)對(duì)應(yīng)較大的x值和較大的y值。并且畫布中x和y值越大,則對(duì)應(yīng)的z值越小。x和y的垂直和水平縮放系數(shù)來自30度角的正弦和余弦值。z的縮放系數(shù)0.4,是一個(gè)任意選擇的參數(shù)。

對(duì)于二維網(wǎng)格中的每一個(gè)網(wǎng)格單元,main函數(shù)計(jì)算單元的四個(gè)頂點(diǎn)在畫布中對(duì)應(yīng)多邊形ABCD的頂點(diǎn),其中B對(duì)應(yīng)(i,j)頂點(diǎn)位置,A、C和D是其它相鄰的頂點(diǎn),然后輸出SVG的繪制指令。

練習(xí) 3.1: 如果f函數(shù)返回的是無限制的float64值,那么SVG文件可能輸出無效的 多邊形元素(雖然許多SVG渲染器會(huì)妥善處理這類問題)。修改程序跳過無效的多邊形。

練習(xí) 3.2: 試驗(yàn)math包中其他函數(shù)的渲染圖形。你是否能輸出一個(gè)egg box、moguls或a saddle圖案?

練習(xí) 3.3: 根據(jù)高度給每個(gè)多邊形上色,那樣峰值部將是紅色(#ff0000),谷部將是藍(lán)色(#0000ff)。

練習(xí) 3.4: 參考1.7節(jié)Lissajous例子的函數(shù),構(gòu)造一個(gè)web服務(wù)器,用于計(jì)算函數(shù)曲面然后返回SVG數(shù)據(jù)給客戶端。服務(wù)器必須設(shè)置Content-Type頭部:

w.Header().Set("Content-Type", "image/svg+xml")

(這一步在Lissajous例子中不是必須的,因?yàn)榉?wù)器使用標(biāo)準(zhǔn)的PNG圖像格式,可以根據(jù)前面的512個(gè)字節(jié)自動(dòng)輸出對(duì)應(yīng)的頭部。)允許客戶端通過HTTP請(qǐng)求參數(shù)設(shè)置高度、寬度和顏色等參數(shù)。



以上內(nèi)容是否對(duì)您有幫助:
在線筆記
App下載
App下載

掃描二維碼

下載編程獅App

公眾號(hào)
微信公眾號(hào)

編程獅公眾號(hào)